

Development of crop ideotypes

Shizukuishi

Milan

Development of crop ideotypes

Development of crop ideotypes

- After deriving ideotype profiles, a crucial step is quantifying the potential benefits deriving from their adoption
 - This allows comparing costs and benefits of a breeding program based on the ideotypes

Los Baños Ludhiana Nanjing Shizukuishi Milan

 In case the ideotype differs from current varieties for a single trait, the evaluation of its performances can be achieved with an in silico introgression

CrossMark

District specific, in silico evaluation of rice ideotypes improved for resistance/tolerance traits to biotic and abiotic stressors under climate change scenarios

L. Paleari¹ · G. Cappelli¹ · S. Bregaglio¹ · M. Acutis¹ · M. Donatelli² · G. A. Sacchi³ · E. Lupotto⁴ · M. Boschetti⁵ · G. Manfron^{3.5} · R. Confalonieri¹

Development of crop ideotypes

Computers and Electronics in Agriculture 128 (2016) 46-49 Contents lists available at ScienceDirect

Computers and Electronics in Agriculture

journal homepage: www.elsevier.com/locate/compag

Computers and extertainties in certainties

Application note

ISIde: A rice modelling platform for in silico ideotyping

L. Paleari^{a,*}, S. Bregaglio^a, G. Cappelli^a, E. Movedi^a, R. Confalonieri^b

Sample results

$\checkmark\,$ Evaluation of **rice ideotypes** in Italian districts

- Sample results
 - ✓ Evaluation of rice ideotypes in Italian districts
 - Tolerance to cold-induced spikelet sterility

- As mentioned, current crop models are not completely suitable to support breeding/genetics
 - ✓ They were not explicitly developed for this purpose
 - The risk is to develop ideotypes that cannot be realized in vivo
- Two strategies:
 - ✓ Mid term

Mid term strategy

- **Develop new models**, by building models around traits
 - \checkmark An example for rice and salinity (toxic effect)
 - We defined as "traits" crop features for which specific breeding programs are ongoing
 - We developed a model starting from those traits

SCIENTIFIC REPORTS

Livia Paleari¹, Ermes Movedi¹ & Roberto Confalonieri²

OPEN Trait-based model development to support breeding programs. A case study for salt tolerance and rice

Received: 6 January 2017 Accepted: 8 May 2017 Published online: 28 June 2017

Eco-physiological models are increasingly used to analyze $G \times E \times M$ interactions to support breeding programs via the design of ideotypes for specific contexts. However, available crop models are only

- Tolerance traits:
 - Na+ uptake and translocation to the shoot (T1)
 - ✓ Na⁺ sequestration into pseudo-culm base (T2)
 - Na⁺ compartmentation into oldest leaves (T3)
 - Impact of the accumulated Na⁺ on photosynthesis and leaf senescence (T4)
 - Na⁺ induced spikelet
 sterility (T5)

Development of crop ideotypes

- Sample results
 - ✓ Rice, salinity, Greece, California

- Develop new models, by building models around traits
 - ✓ Not only salinity...
 - Canopy structure

- Develop new models, by building models around traits
 - ✓ Not only salinity...
 - Canopy structure

- Develop new models, by building models around traits
 - ✓ Not only salinity...
 - Multi-spectral photosynthesis
 - Available crop models simulate photosynthesis without considering efficiency in different wavelengths
 - Saturation to light of enzymatic chains is mostly simulated at the level of whole canopy
 - Phytochrome A

Phytochrome A

Energy balance in different canopy layers Leaf senescence

- As mentioned, current crop models are not completely suitable to support breeding/genetics
 - ✓ They were not explicitly developed for this purpose
 - The risk is to develop ideotypes that cannot be realized in vivo
- Two strategies:
 - ✓ Mid term
 - ✓ Short term

Short term strategy

- What can we do **while new models are developed?**
- Try to reduce the risk of defining in silico varieties that cannot be realized in vivo
- Hows
 - ✓ Selecting the most suitable model according to the specific objective
 - Pay attention to the biophysical meaning of parameters (which parameters, ranges, distributions)
 - ✓ Multi-model ideotyping?

Multi-model ideotyping

- Assumptions:
 - Models are partially unsuitable for ideotyping for different reasons (ways processes are represented)
 - Each having imperfect relationships between parameters and traits
 - ✓ The effects of those imperfect relationships will be diluted
 - The impact of the (over)responsiveness of different models to the uncertainty in the distributions for the same parameters (or of parameters with a very similar meaning) will be decreased

→ We are leading an **international activity** on this within **AgMIP**-**Rice**

Short term strategy

- What can we do **while new models are developed?**
- Try to reduce the risk of defining in silico varieties that cannot be realized in vivo
- Hows
 - ✓ Selecting the most suitable model according to the specific objective
 - Pay attention to the biophysical meaning of parameters (which parameters, ranges, distributions)
 - ✓ Multi-model ideotyping?
 - Interaction between modellers, breeders, geneticists, physiologists

Crop models and breeding

Two main strategies

- 1. Identifying most promising traits (and trait values), also targeting "future" conditions
 - Estimating potential benefits

...in silico ideotyping

- 2. Extending the potential of genomic prediction (GP) ...in silico phenotyping?
 - Very few attempts at the moment Currently, focus on **phenology**

Why crop model-supported GP?

- ✓ Standard GP:
 - Statistics is used to derive relationships between genotype and phenotype
 - → relationships are **not explicit**
 - → relationships valid only under the same conditions for which they were developed
- ✓ Model-supported GP:
 - The **model** is used to **interpret G × E** interactions
 - → relationships between genotype and phenotype are more explicit
 - \rightarrow relationships should be **valid** under **conditions different** from those they were developed for

- Sample results:
 - ✓ 169 rice accessions (rice diversity panel)
 - Genomic data (SNPs) consisting of 700,000 SNPs from the highdensity rice array (IRRI)
 - $\checkmark\,$ Trait: days from sowing to flowering
 - 3 sites (2 in Madagascar, 1 in Senegal)
 - 10 planting dates (on 2 years)
 - ✓ Number of observations for each genotype: 8 to 10

- Sample study, step 1:
 - ✓ Decomposition of the complex trait
 - ✓ Crop models {in case of WARM}:
 - Base temperature for thermal time accumulation
 - Maximum temperature for thermal time accumulation
 - Sensitivity to photoperiod
 - Growing degree days from sowing to flowering

✓ Minimize the risk of losing robustness during calibration

 Sensitivity analysis to identify most relevant parameters (those to focus on during calibration)

• Sample study, step 1:

I_11/15/2009

A_11/27/2010

						_
PhotoSens	003	000000	00000000	X8900698	2062202	ר
GddFl						J
Tbase	z	m				ך
Tmax						
	0	0,1	0,2	0,3	0,4	0,5

I_11/20/2010

PhotoSens	********		*****	
GddFl				J
Tbase	<u> </u>			
Tmax				
	0	0,2	0,4	0,6

N_03/07/2009

N_07/17/2009

N_09/17/2009

PhotoSens	2002200		60066606666	
GddFl				
Tbase	23			
Tmax				
	0	0,2	0,4	0,6

N_02/07/2009

N_10/19/2009

Pho	otoSens	066006	000000000		8
	GddFl				
	Tbase	22			
	Tmax				
-0	,2	0	0,2	0,4	0,6

N_04/07/2009

- Sample study, step 1:
 - ✓ Decomposition of the complex trait
 - ✓ Crop models {in case of WARM}:
 - Base temperature for thermal time accumulation
 - Maximum temperature for thermal time accumulation
 - Sensitivity to photoperiod
 - Growing degree days from sowing to flowering

✓ Minimize the risk of losing robustness during calibration

 Sensitivity analysis to identify most relevant parameters (those to focus on during calibration)

- Sample study, step 2
 - ✓ **GP** on calibrated model parameters
 - R package **rrBLUP** (Endelman, 2011) for GP
 - RR-BLUP can directly handle multi-environment data and allow running GWAS and GP with a one-step approach
 - Training dataset: 135 accessions
 - **Relationships** between **SNPs** and model **parameters**
 - Validation dataset: 34 accessions
 - SNPs-derived model parameters to simulate flowering date

- Sample study, step 3
 - Prediction of flowering date by running the crop models with genomic-predicted model parameters (validation dataset)

Evaluation through comparison with observed flowering date